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1 Introduction

In 1931 a young mathematician named Kurt Gödel published results that

would transform fledging branches of pure mathematics & redefine the way

the public has interacted with the mathematical sciences ever since. Called

the Incompleteness Theorems, plural because there are exactly two, many

formidable minds have waxed poetic & philosophical about their scope and

implications. Some have argued that they can be taken to show that the

mind cannot be modeled by a machine. Others have said that Gödel’s results

show that only God can know all mathematical truths. Even Hofstadter,

author of bestselling Gödel, Escher, Bach (1979), has said that the Incom-

pleteness Theorems lie at the core of AI. While Goldstein, author of an entire

biography entitled Incompleteness: The Proof and Paradox of Kurt Gödel

(2005), has said that the Gödel theorems address “the central question of

the humanities: what is involved in our being human?” In 2020 Wired Mag-

azine published an article on Gödel’s theorems that suggests that “Gödelian

incompleteness afflicts not just math but – in some ill-understood way –

reality.” Such ways of thinking about two theorems in a subfield of pure

mathematics are inspired, but misconceived. So what do the Incomplete-

ness Theorems say and what exactly is supposed to be incomplete?

1.1 Setting the Stage

Whatever we might think of inspired inferences like the ones above, one

thing is certain: the Incompleteness Theorems took direct aim at Hilbert’s
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Program (HP). In the 30 or so years leading up to Gödel’s Incompleteness

Theorems, mathematician David Hilbert had proposed to extend the suc-

cessful results for the completeness of first-order logic to mathematics. The

Completeness Theorems, as they apply to formal first-order logic, are that

the language of first-order logic is sound and complete. For a language to

be sound means that if a sentence has a proof in that language, then that

sentence is true in all possible models of the language. For the language to

be complete means that if a sentence is true in all models of that language,

then it has a proof in that language. More precisely, let’s use the language

of first-order logic. Suppose the following symbols are defined as follows:

¬ := not ∨ := or ∧ := and

The Completeness Theorem for a first-order logical language L says that,

for example, for any arbitrary sentence p:

if p ∨ ¬p is true in all models of L
then p ∨ ¬p is a theorem of L.

That’s to say that all logical truths are theorems of L and hence, L is

complete. Hilbert had proposed to extend those results to the language of

arithmetic, and then, if they’d been successful at that, extend them fur-

ther to analysis and beyond. This proposal came to be known as Hilbert’s

Program. To carry (HP) out, it would mean that for every sentence in the

language of arithmetic and analysis – from easy things like 0 = 0 and 0 = 1

to harder things like the Intermediate Value Theorem – there is a proof of

it, or its negation, in the language. Especially important to Hilbert’s Pro-

gram was to prove that there is no proof in the language of arithmetic of a

sentence and its negation, a contradiction of the form p∧¬p. That’s to say

that one of the main aims of (HP) was to use a mathematical proof to show

that mathematics is consistent. Alas, it is said, it was not to be.

Upon publishing his two theorems, a consensus in the 1930s emerged,

that persists today, that they implied that carrying out (HP) was simply

not possible. Gödel’s First Incompleteness Theorem (G1) states that for

any recursively enumerable formal theory T that axiomatizes a sufficient
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amount of arithmetic there is a formula ϕ in the language of T that is

true in its model but neither provable nor refutable using T ’s axioms and

inference rules. Gödel’s Second Incompleteness Theorem (G2) states that

it is possible to produce for ϕ a formalization of the assertion that T is

consistent such that the formula is true in its model, but again neither

provable nor refutable in T . In contrast to (G1), (G2) concerns an inherently

self-referential statement that is central to the goal of proving the consistency

of classical arithmetic. In the tradition following Gödel’s first and second

incompleteness theorems, with few exceptions philosophers, logicians, and

mathematicians have claimed that (G2) entails that for any T satisfying the

above conditions T does not prove its own consistency, or that, similarly, no

consistency proof of T is formalizable in T . Though the theorem in Gödel

(1931) is somewhat different, for the moment, let’s refer to (G2) as:

(G2) T ̸⊢ Con(T )

and distinguish it from the claims:

1. that T does not prove its own consistency; and

2. that no consistency proof of T is formalizable in T .1

One task is to understand if (G2) justifies claims (1) or (2). Once we do, we

are in a better position to see how (G2) affects (HP).

1.2 Outline & Goals

Our plan is as follows. In section (2) we’ll look at the method of arithme-

tization. Arithmetization is at the heart of (G1) and (G2) and forms the

basis for getting a formal mathematical theory T to say of itself that it is

consistent, in whatever ways it might. In section (3) we look at claims (1)

and (2) above as interpretations of (G2). It turns out that on an extensional

interpretation of (G2), (1) and (2) do not follow. But on an intensional inter-

pretation, claims (1) and (2) are true. However, intensional interpretations

1 Franks (2009) calls (1) and (2) the “Gödelian inferences” because in (1931) Gödel him-
self was the first to draw them in such a way. But since most logicians & mathematicians
post-1931 make these inferences, we’ll just refer to them as above.
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raise the issue of the correctness of the consistency formula because on such

an interpretation, T must recognize the consistency formula as the formula

that expresses its own consistency. Our question then concerns the correct

conditions under which T recognizes its own consistency. In section (4) we

show that there is a formalism that is able to recognize that its provable

sentences form a subclass of the sentences true of each complete extension

of itself, and that in such a formalism Gödel’s Second Incompleteness The-

orem does not follow. But this leads to a natural research problem: find

the mathematically weakest formal theories that fail to recognize properties

that are true of complete extensions of itself, that is, the weakest theories for

which Gödel’s Second Incompleteness Theorem is true. Because, if we can

find such theories, then eo ipso those theories are upper bounds of theories

for which (G2) is not true.

2 How to Get Numbers to Say Things

At its heart, arithmetization is a coding of the syntactical symbols of a formal

language LT of a formal mathematical system T using simple, tractable

theorems from number theory to assign numbers to the sentences of T .

So, an arithmetization encodes sentences about a mathematical theory as

sentences within that mathematical theory. Take for example, the sentence:

there is a proof in number theory

of the fundamental theorem of arithmetic.

This is a sentence about number theory, about the existence of proofs in

number theory. An arithmetization of that sentence would produce a true

theorem of number theory, say 2 + 2 = 4, that encodes the sentence above

by assigning each syntactical element in the sentence to numbers in number

theory. Hence, an encoding is a mapping that enables expressions about

a formal theory to be embedded into the formal theory itself, so that af-

ter application of the procedure, sentences of the formal theory assert that

certain properties of natural numbers hold of sets of natural numbers, and

these sentences make indirect assertions about certain properties of formu-
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lae holding of sets and sequences of expressions. It’s in this sense that an

arithmetization can get numbers to say things.

Let’s see how by looking at an example. Consider the table below.

symbol ♯ assignment meaning

¬ 1 not / negation

∧ 3 and

→ 5 if . . . then . . .

∃ 7 there exists

( 9 left parenthesis

) 11 right parenthesis

vi i+ 13 variable

0 2 zero

S 4 successor

= 6 equals

+ 8 addition

The table can be seen as a representation of a kind of mapping of logical and

arithmetical symbols in the language to numbers. Now let’s take a sentence

in the language of formal arithmetic:

¬∃v0(Sv0 = 0)

This sentence says:

it’s not the case that there exists a number v0 such

that 0 is the successor of that number.

Or, in more familiar terms, zero is not the successor of any number. Our

table lets us map each one of the syntactical elements in the formal sentence

above to a number so that we get the following sequence:

< 1, 7, 13, 9, 2, 13, 4, 2, 11 >

We could just take the sum of this sequence – 62 – as the sentence’s number

but then it would not uniquely represent the sentence because there are
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infinitely many ways to decompose 60, such as 20 + 20 + 13 + 7 + 2. And

that way of decomposing 60 represents the ill-formed, nonsensical string:

v7v7v0∃0

In order to make sure that the number is unique, Gödel’s main insight

was to use the Fundamental Theorem of Arithmetic. That theorem, first

proved in Euclid’s Elements, says that every integer greater than one can be

represented as the unique product of primes. Hence, for example, 264 has a

unique prime factorization as:

(2× 2× 2)× 3× 11

which is just:

23 × 31 × 111

So let’s use this basic fact from arithmetic and map our sequence into ex-

ponents of products of primes:

21 × 37 × 513 × 79 × 112 × 1313 × 174 × 192 × 2311

This is then the unique number associated with the sentence above, and is

called its Gödel Number, denoted as:

G♯(¬∃v0(Sv0 = 0))

or simply as the product itself.2 In Gödel (1931) there are of course some

differences, and Gödel himself only offered sketches. It was sharpened by

successive mathematicians in the years following the publication of his two

theorems, but the essence of arithmetization is captured by the above.

One of the main consequences of this method is that not only can it be

2 More explicitly, f is a function mapping each symbol of a first-order language LT of
a formal arithmetic T to a specific natural number by partitioning the symbols of T into
predicate parameters and logical symbols, partitioning the natural numbers into even and
odd numbers, and defining f such that f maps parameters to even numbers and logical
symbols to odd numbers. Then a Gödel Number of a sentence in LT is the value of a
function g that maps sequences of f to exponents of products of primes.
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used to encode theorems of arithmetic and analysis in LT but it can also

encode sentences in LT about theorems and axioms and proofs in T . Arith-

metization gets numbers to say things about other numbers in arithmetic

and analysis and it gets numbers to say things about proofs, theorems, and

axioms in arithmetic and analysis. For example, taking our example above,

we can use arithmetization to say:

the formula with Gödel Number 21×37×513×79×112×1313×
174 × 192 × 2311 begins with negation.

Since negation was assigned the number 1 in the table, that sentence can be

understood as a sentence about how the prime factorization of the number

above begins with 21, namely that:

there is some number v0 such that v0 × 2 = 21 × 37 × 513 × 79 ×
112× 1313× 174× 192× 2311 and there is no integer v1 such that

v1 × 4 = 21 × 37 × 513 × 79 × 112 × 1313 × 174 × 192 × 2311.

Hence, the artihmetization allows us to prove, in T , that the large number

above has 2 as a factor but not 4 which, when decoded, is a true sentence

about the syntax of a formula in T . It’s in this specific way that arithme-

tization allows us to convert sentences about proofs and theorems of T into

sentences about prime factorizations.

Most importantly, we can consider predicates such as:

x is the Gödel Number of a proof in T

of the formula with Gödel Number y

which is translated into an arithmetical predicate in T of the form:

PrfT (x, y)

Let n be the Gödel Number of that predicate. Now consider the predicate:

z is the Gödel Number of a proof in T

of the formula with Gödel Number n

7



that is, an arithmetical predicate in T :

PrfT (z, n)

But now, the proof in T refers to itself, and it is this basic insight that Gödel

uses to prove (G1) and (G2). Consider, for example, the predicate:

¬∃xPrfT (x, y)

This says that it’s not the case that there is a proof in T with G♯(x) of the

formula with G♯(y). Let G♯(n) be the Gödel Number of that formula. Now

substitute n for y in the first formula:

¬∃xPrfT (x, n)

and call the Gödel Number of this formula G♯(g). What does this formula

say? It says that there is no proof in T of the formula (itself) with no

proof in T . In short it says of itself that it is not provable in T . By the

construction of the sentence it is true in T . But, of course, because what it

says is true, it follows that G♯(g) is not provable in T .

This is the crux of how (G1) works. We’ve produced a true but unprov-

able sentence in T . Note that the arithmetization procedure for (G1) only

relies on the formula being “numerically correct,” meaning that the Gödel

Numbers assigned at each step must be unique, and that each formula must

express some unique property of a Gödel Number’s prime factorization. But

what about when we turn to (G2)? In many ways (G2) appears to follow

directly from (G1). The consistency of T is expressed by the sentence:

Con(T ) := ¬∃xPrfT (x,⊥)

which says that it’s not the case that there exists a proof x in T of a contra-

diction, where ⊥ means a formula of the form p∧¬p. Then, let G♯(Con(T ))
be the Gödel Number for the Gödel sentence that says that there is no proof

of Con(T ) in T . By the construction, what it says is true, but because of

what it says, it follows that there is no proof of Con(T ) in T . QED it seems.
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3 Intension & Extension

What I want to turn to now is claims (1) and (2) above. For although the

inference from (G1) to (G2) seems direct, (G2) is much more sensitive than

(G1) to how an arithmetization is done. The basic problem is as follows.

Feferman (1960) claims that, unlike (G1), interpreters of (G2) are confronted

with a unique problem. Now (G1) states that for any formal system T , there

is a formula true in a model of T but not provable using T ’s axioms and rules

of inference. If formalized this statement only expresses the fact that some

sentence is true but formally underivable in T , but does not tell us which

sentence, nor if T need recognize the sentence that is formally underivable.

Insofar as T contains some primitive recursive arithmetic, then it is possible

to recursively arithmetize a sentence for T that satisfies (G1). But for the

proof of (G2) T must recognize that the sentence that is formally underivable

is a sentence that expresses, or “says” that T is consistent. Feferman writes:

[i]n broad terms, the applications of the method [of arithmeti-

zation] can be classified as being extensional if essentially only

numerically correct definitions are needed, or intensional if the

definitions must more fully express the notions involved, so that

various of the general properties of these notions can be formally

derived. (Feferman (1960), 35)

For extensional examples Feferman lists (G1), the undefinability of truth,

and the undecidability results for various theories. For examples of the in-

tensional type he lists (G2), results of relative consistency strengths between

theories, and logics for ordinal analysis. For results of the first type one need

only know that arithmetization of the metamathematical concept picks out

a unique numerical class. But for results of the second type one must know

that the numerical class picked out correctly expresses the metamathemati-

cal concept. Since our analysis of this distinction will aid us in understanding

how, if at all, claims (1) and (2) are consequences of interpretations of (G2),

in what follows we sharpen it.3

3 By “picking out a numerical class” is meant either bi-numerate or numerate. See
Feferman (1960), 51.
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3.1 Intension and Extension

In order to sharpen up the distinction between extensional and intensional

applications of arithmetization, let’s first consider a few concrete examples.

Gödel (1931) states the theorem for the ω-consistency of a formal system.

For the system that Gödel studied, Principia Mathematica (PM), it is said

to be ω-consistent just in case when (PM) proves ϕ(n) for all n, where ϕ is an

arithmetical formula, then ϕ(n) is true in the standard model of arithmetic

for each n. After Gödel, Rosser (1936) strengthened Gödel’s result and

along the way found a predicate distinct from the one that expresses the

proof relation “x is a proof in T of y” for a theory T to obtain extensionally

improved theorems concerning provability in metamathematics. Let:

PrfT (x, y)

be a numerically correct definition of the proof relation for T . Then the

Rosser predicate is the relation PrfRT (x, y) defined by:

PrfT (x, y) ∧ ¬∃z [z ≤ x ∧ PrfT (z, neg(y))].

Under the assumption that T is consistent, then PrfRT (x, y) and PrfT (x, y)

are extensionally equivalent. But the Rosser proof predicate says that x is a

proof of y in T such that there are no proofs z in T shorter than x that prove

the negation of y, and therefore fails to express the proof relation in T , which

is instead expressed by PrfT (x, y). Hence, while Prf
R
T (x, y) and PrfT (x, y)

are extensionally equivalent, they are not intensionally equivalent. Here

is, then, an example in which it is possible to use predicates with “non-

standard” intensions in order to obtain extensional improvements (in the

sense of a wider scope) upon existing theorems.

In a similar direction, let T be a formal system containing some arith-

metic, let PrfT (x, y) be a numerically correct definition of the proof relation

as above, and consider the relation PrfCT (x, y) defined by:(
PrfT (x, y)

∧
¬∃u∃w∃z

(
(u ≤ x ∧ w ≤ x ∧ z ≤ x)
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∧
(PrfT (u, z) ∧ PrfT (w, neg(z)))

))
.

Again if T is consistent, then PrfCT (x, y) is extensionally equivalent to

PrfT (x, y). If we now define a consistency predicate, ConC(T ), as:

¬∃x∃y∃z
(
PrfCT (x, z) ∧ PrfCT (y, neg(z))

)
then, since the above is an instance of a first-order validity, it is possible to

prove ConC(T ) in T . But does that sentence express the consistency of T?

Feferman claims that it does not. In his view the predicate PrfCT (x, y) is

“intensionally incorrect, so we can ascribe no clear intensional meaning to

the result.” Moreover, in contrast to Rosser’s manipulation of the intension

of the definition of provability in order to obtain an improved extensional

result, with this definition “we cannot formally derive other properties of

provability in terms of the definition [PrfCT (x, y)],” and hence “we see no

results of extensional interest which follow from the proof of [ConC(T )]”

(Feferman (1960), 37). Note, though, that there are two claims implicit

in Feferman’s argument. First, he suggests that it is we who ascribe the

intensional meaning to a metamathematical result. Second, he suggests

that if no fruitful consequences of “extensional interest” result from the use

of predicates with “non-standard” intensions, then that counts as evidence

against believing that the predicate expresses a meaningful concept. Let’s

return to these in a moment, once we’ve further sharpened the problem.

3.2 Sharpening the Problem

Franks (2009) makes the distinction between extensional and intensional

interpretations of metamathematics by arguing that on an extensional in-

terpretation, statements about formal systems are “theory-independent” in

the sense that such statements are independent of what the formal system

counts amongst its theorems and proofs. Hence, in the case of a consistency

sentence, it is possible for there to be, from our “theory-independent” point

of view, various extensionally equivalent means of expressing the consis-

tency of a formalism regardless of whether the formalism itself proves them
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to be equivalent. But on an intensional interpretation of metamathemat-

ics, “statements about mathematics [formal systems of mathematics] are

always part of a mathematical theory,” or “theory-dependent,” in the sense

that statements about the system depend entirely upon what is provable in

it (Franks (2009), 7). Hence, on an intensional interpretation, a function is

not defined unless the formalism proves that it satisfies the relevant existence

and uniqueness conditions, two formulae cannot be counted as equivalent un-

less the formal system proves it, and a formal system proves a formula just in

case that formal system proves the “correct” formalization of the statement

that it proves the formula. But note that both extensional and intensional

interpretations presuppose standards of correctness. From the extensional

point of view, that standard is tied to whether a metamathematical predi-

cate picks out extensionally identical numerical classes, independent of the

details of the formal system for which it is defined. From the intensional

point of view, it is tied to how a formal system proves (or fails to prove)

that a formula is a correct expression of the metamathematical concept for

that particular system, and hence, the standard varies dependent upon the

details of the formal system for which the predicate is defined.

For example, Hilbert and Bernays (1939) set out three conditions aimed

to furnish standards for the intensional correctness of a proof predicate. In

order for a proof predicate to be intensionally correct, T must satisfy:

(HB1) if ⊢T ϕ then ⊢T ProvT (ϕ);

(HB2) ⊢T ProvT (ϕ→ ψ) → ProvT (ϕ) → ProvT (ψ);

(HB3) ⊢T ProvT (ϕ) → ProvT (ProvT (ϕ)).
4

While (HB1) ensures that T recognizes that its proofs are recursively enu-

merable, (HB2) ensures that T recognizes that all its proofs are closed under

modus ponens, and (HB3) ensures that T recognizes that all its provable

theorems are provably provable. Hilbert and Bernays show that these three

conditions are sufficient for the proof of (G2). Hence, one need only verify

4 In Hilbert and Bernays (1939) the derivability conditions stated are slightly different
than the three conditions stated above, which are the improved conditions found in Löb
(1955). For the original reference see Hilbert and Bernays (1939), 295ff.
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that a formal system satisfies these conditions in order to prove (G2) with-

out being required to provide an explicit definition of the proof predicate.

However, there are at least two problems with their approach. First, their

motivation is to find the conditions sufficient for (G2). But if the possibility

of a consistency proof is in question, then it cannot be the case that the

standards for intensional correctness are just those conditions that permit

the proof of (G2), since that begs the question. Second, while it is true that

given a formal system that satisfies these conditions one may assume that

(G2) is provable without an explicit definition of proof, it is not true that

given an explicit definition of proof for a formal system, there is a general

method for testing whether it satisfies these conditions. Hence, these condi-

tions are instrumental for having the resources required to prove (G2), but

fail to fix the standard for correctness according to how it varies with the

details of the particular formal system for which it is defined.

In response to this, Feferman (1960) proposes a general approach to

intensionality that follows Hilbert-Bernays, but attempts to overcome its

limitations. Feferman identifies a set of conditions that the proof predicate

must meet such that it correctly expresses the concept for any formal system

for which it is defined. Given a formal system T , one associates with it the

class of all formulae τ(x) that numerically define the set of axioms of T .

Then, by formalizing the concept of logical proof, one associates with each

τ a formula Prfτ (x, y) and a sentence Conτ . Hence, on his approach, the

proof relation is fixed by the set of non-logical axioms of a formal system, and

the proof and consistency predicates are built out of the concept of logical

proof underlying those axioms. He writes that on his approach “whenever a

formula τ(x) can be recognized to express correctly that x is an axiom of T ,

the associated sentence Conτ will be recognized to be a correct expression of

the proposition that T is consistent.” Due to the generality of the approach,

“all intensionally correct statements of consistency for familiar theories can

be obtained as special cases” (Feferman (1960), 38). Any changes made

to the formula must be from the “inside,” that is, made by varying the

proof definition based on choosing subclasses τ ′ of the class of formulae

τ . Feferman contrasts his approach with approaches like Rosser’s that, he
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claims, are changes made from the “outside,” a designation that is intended

to suggest that, while useful in some respects, such changes are artificial

because they involve changes in the concept of logical proof.

3.3 Problems for Interpreting (G2)

Thus far we have looked at some examples of how the extension and intension

of a proof predicate come apart, and looked at two examples of approaches

to providing conditions that allow for some generalizations of (G2). Our

question is now whether the extensional or intensional approaches entail

claim (1) or (2) or both. Hence, the basic questions are whether the exten-

sionalist is able to secure the inference from his interpretation of (G2) to

claims (1) and (2), and whether the intensional approach defended by Fefer-

man (1960) is able to secure the inference from his interpretation of (G2) to

claims (1) and (2). For the extensionalist, the task is to find general versions

of (G2) such that the conditions that it must meet in order to be derived

are met by all correct formalizations of consistency. Detlefsen (1986) calls

this the “stability problem,” and writes that the extensionalist must “show

that every set of properties sufficient to make a formula a fit expression of

T ’s consistency is also sufficient to make that formula unprovable in T (if T

is consistent)” (Detlefsen (1986), 81). Hence, if some correct formalization

of consistency does not meet the conditions, then the inference from (G2)

to (1) or (2) is “unstable.” On the other hand, the intensionalist must find

a set of necessary and sufficient conditions for metamathematical predicates

such that a T -proof of those conditions amounts to a demonstration of the

intensional correctness of those conditions in T . But here the problem is

slightly different, since the intensionalist must, in addition, explain how the

proposed conditions are constitutive of the metamathematical concept.

How does the extensionalist face his task? Suppose, for the moment, that

his standard of correctness is that the predicates must be numerically correct

in the sense that they pick out identical numerical classes. Consider again

the proof predicate PrfCT (x, y). Above we mentioned that it is numerically

correct, and that T need not recognize (in the sense of prove) that the

two predicates are equivalent but that it suffices for us, from our theory-
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independent point of view, to be able to recognize the equivalence. If one

builds the “usual” consistency statement out of PrfT (x, y):

Con(T ) := ¬∃xPrfT (x,⊥)

then while T fails to prove Con(T ), it does prove ConC(T ). That is, while

(G2) goes through for Con(T ) it does not go through for ConC(T ). Hence,

since there is a T -proof of ConC(T ) and since it is formalizable in T , the in-

ference from (G2) to (1) and (2) fails if the extensionalist’s standard is that

a proof predicate and consistency statement merely be numerically correct.

It seems that there are two ways to rectify the situation. First, he might

argue for the claim that there is a theory-independent concept of consistency

expressed by Con(T ) that ConC(T ) fails to express. But this approach re-

quires that he have in hand a theory of meaning or content that supports

his claim. Hence, accepting or rejecting Con(T ) as expressing uniquely the

consistency of T will depend on our inclination to accept or reject the un-

derlying theory of meaning. Or, he might argue that some standard other

than numerical correctness governs the arithmetization of metamathemati-

cal concepts. But this approach changes the standard because of (G2), and

so begs the question in that it assumes that the inference from (G2) to (1)

or (2) is valid rather than establish it on independent grounds.

It might be the case that there are other means for the extensionalist

to defend the inference from (G2) to (1) or (2), but the prospects do not

seem encouraging. On the other hand, on the intensional interpretation of

(G2), the inference from it to (1) or (2) is immediate. To understand why,

consider the following. Gentzen’s Hauptsatz asserts that for every classical

proof there is a corresponding “cut-free” proof that does not use classical

indirect proof methods (that might be longer, but combinatorially simpler).

It is possible, then, to build a “Gentzenian” proof predicate PrfGT (x, y) that

is extensionally equivalent to PrfT (x, y). Hence, if the cut-rule is admissible

for T , then it is possible to build two formulae, Con(T ) and ConG(T ), that

are extensionally equivalent. However, depending upon our choice of for-

malism, T might be proof-theoretically rich enough to arithmetize Con(T ),

but not be rich enough to prove the formalization of the Hauptsatz, and
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hence, T might not prove that Con(T ) and ConG(T ) are equivalent. Hence,

from the point of view of some formalisms, Con(T ) and ConG(T ) do not

express the same concept. It follows that at most one of the two predicates

is intensionally correct for those formalisms. Hence, if such a formalism

does not prove one of the two formulae, and recognizes the one not provable

as an expression of its own consistency, then (1) follows immediately from

(G2) for this formalism. Moreover, for the intensionalist there is no other

option than to prove in the formalism that the predicate that expresses that

formalism’s consistency is unprovable, and so (2) follows from (1). It seems,

then, that on an intensional understanding of metamathematical predicates,

(1) and (2) follow immediately from (G2) for specific formalisms. But our

questions are now twofold. First, is it possible to obtain results that do

not depend upon the details of specific formalisms? Second, what are the

standards that constitute a formula’s intensional correctness?

In Feferman’s view, it is possible to answer these two questions at the

same time. He argues that the goal is to find conditions that are consti-

tutive of metamathematical concepts that permit generalizations of (G2)

such that one need not restrict the arithmetization of provability to specific

formalisms. Predicates that meet said conditions permit the inference from

(G2) to (1) and (2). Let ProofT (x) represent the unary predicate “x is a

proof in T ;” let PrfT (x, y) represent the binary predicate “x is a proof in

T of y;” and let PrT (y) := ∃xPrfT (x, y) represent the predicate “y is a

theorem of T”. In order for a provability predicate for T to be intensionally

correct, Feferman claims that it must satisfy the following conditions:

(i) ⊢T ∀ϕ ∀ψ (PrT (ϕ) ∧ PrT (ϕ→ ψ) → PrT (ψ));

(ii) ⊢T ∀ϕ (PrT (ϕ) → PrT (PrT (ϕ)));

(iii) ⊢T ∀x(ProofT (x) → PrT (ProofT (x)));

(iv) ⊢T ∀ϕ ∀x(PrfT (x, ϕ) → PrT (PrfT (x, ϕ)))).
5

5 Note that the list above is incomplete, but captures Feferman’s most important con-
ditions that a formal system must meet in order for its provability predicate to be inten-
sionally correct. For the original list and further reference, see Feferman (1960), 60ff. Also
note that, for simplicity, reference to Gödel numbering in the predicates is omitted.
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For each condition, if T satisfies it, then T expresses a concept constitutive of

provability. Condition (i) expresses the concept that theoremhood is closed

under modus ponens. Condition (ii) expresses the concept that provability

is idempotent, or more suggestively, transparent. Condition (iii) expresses

the concept that all T -proofs are formalizable in T . Condition (iv) expresses

the concept that all T -proofs of closed formulae are formalizable in T . Fe-

ferman claims that a “minimal” standard governs the choice of conditions

on intensional correctness. At the least, such conditions must preserve the

logical—in contrast to the mathematical or finitistic—steps in a derivation.

Hence, for Feferman, provability in T reduces to logical provability.

For example, Feferman derives an important consequence from his ap-

proach that shows how conditions (i)-(iv) preserve a derivation’s logical

steps. Theorem 5.9 (Feferman (1960), 68) demonstrates that it is possible

to choose a subformula τ∗ of the class of formulae τ that strongly represent

the axioms T of a consistent recursive extension T of (PA) such that:

⊢PA Con
τ∗(T ).

In other words, there is a formula that is a numerically correct (strong)

representation of the consistency of a set of axioms extending (PA) such

that (PA) proves the extension consistent. On the face of it, theorem 5.9

(and corollary 5.10) appears to contradict (G2). But Feferman argues that

the appearance is just that, and that his approach makes the problem clear.

He writes that “one particular conclusion we can draw is that the formula

[τ∗], although it extensionally corresponds to [T ], does not properly express

membership in [T ]” (Feferman (1960), 69). That is, τ∗ is extensionally

correct but intensionally incorrect because it fails one of the conditions (i)-

(iv), specifically condition (ii). Hence, we have the following:

Theorem 2.0: If ⊢PA Con
τ∗(T ), then ̸⊢PA PrPA(τ∗) → PrPA(PrPA(τ∗)).

Moreover, since theorem 2.0 is formalizable in (PA) by conditions (iii) and

(iv), and (PA) is complete for the proof-predicate, we have the following:

Corollary 2.1: ⊢PA

(
Conτ∗(T ) →

(
PrPA(τ∗) ∧ ¬PrPA(PrPA(τ∗))

))
.
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Both say that (PA) itself recognizes that there are intensionally incorrect

formulations of provability that are nonetheless extensionally correct. That

is, if it proves its own consistency, then it knows that it has failed to produce

a predicate that expresses the correct concept. For Feferman, it follows that

it knows that it has failed to preserve the logical steps in its derivations.6

There are at least three points in Feferman’s analysis to which one might

apply some pressure. Franks (2009) identifies two. He claims that one might

demand a defense of Feferman’s conditions (i)-(iv) on the “grounds that they

seem from one point of view rather strong and from another point of view

too weak” (Franks (2009), 122). Feferman’s conditions are “too weak,” for

Franks, because “certain basic properties about provability do not appear

in Feferman’s list, and in fact cannot” (ibid.). He cites reflection principles:

(Ref) PrT (ϕ) → ϕ

that express the concept that all provable formulae are true and that, by

Löb’s theorem, are unprovable in formalisms satisfying conditions (i)-(iv).

But the objection misfires because Feferman makes no claim for his con-

ditions governing all possible properties, but rather just those properties

that express the logical concept of proof. By contrast, (i)-(iv) are “too

strong,” for Franks, because if ϕ is provable, by condition (ii) there exist in-

finitely many (Gödel) numbers #ϕ,#PrT (ϕ),#PrT (PrT (ϕ)), . . . , and that

“seems like an ontological assumption very far removed from the notion of

ϕ’s provability” (Franks (2009), 123). But this objection misfires as well.

The formulae obtained by iterating condition (ii), given ϕ’s provability, are

syntactic, and hence, make no claims about the ontology of numbers. At

best, such formulae only make claims in a model-theoretic interpretation of

the formalism, and even then, it is unclear how formalisms are committed

to ontology. Hence, Franks is not entitled to conclude that “Feferman’s pro-

posal is incomplete as a method for the explicit arithmetizations needed for

6 Feferman’s approach clearly permits the inferences to (1) and (2). Feferman pursues
arithmetization as it appears within formalisms irrespective of a predicate’s numerical
correctness. Hence, it is possible to claim that if a consistency predicate for a formalism
is intensionally correct, then it is unprovable in that formalism, from which (1) follows;
and that there are consistency proofs formalizable in T only if the consistency predicate’s
formalization is intensionally incorrect, from which (2) follows.
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a fully mathematical treatment of metatheory” (ibid.). In what follows, we

begin to develop our proposal alongside Feferman’s third pressure point.

4 Inside Consistency

Thus far, we introduced the distinction between (G2) and what it “says,”

that is, claims (1) and (2). Then, we analyzed the distinction between ex-

tensional and intensional interpretations of metamathematics as it arises in

discussions of inferring claim (1) or (2) from (G2). In section (3.2) it was

argued that the prospects for inferring claims (1) and (2) from (G2) on an

extensional interpretation of metamathematics are poor. Then it was argued

that on an intensional interpretation of metamathematics, the prospects are

much better, but that the intensionalist must, in addition, explain how the

chosen conditions constitute the metamathematical concept being arithme-

tized. Then we showed that two objections by Franks failed to undercut

two pressure points in Feferman’s approach, and suggested that there is at

least a third point. In section (3.1) we saw that Feferman suggests that if no

fruitful consequences of “extensional interest” result from the use of predi-

cates with “non-standard” intensions, then that counts as evidence against

believing that the predicate expresses the correct concept. But note that his

suggestion opens up a route to the following alternative approach to arith-

metization. Are there changes in the logical concept of proof, i.e., “changes

from the outside,” that might be warranted by how formalisms generate

“fruitful consequences” relative to our choice of provability predicate? In

this section our goal is to begin to develop an approach to arithmetiza-

tion the main feature of which is that one is warranted to believe that a

consistency predicate expresses the correct concept, even if it skirts (G2),

on the condition that its use generates fruitful consequences. Our claim is

that these consequences constitute a unique kind of “internal” mathematical

evidence for intensional conditions that express different concepts of proof.
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4.1 Evidence and Arithmetization

Let’s return, for the moment, to Feferman’s claim that the standard for the

choice of conditions that govern a predicate’s intensional correctness is that

they must express the logical concept of proof. Other conditions might ex-

press a concept, but in Feferman’s view, unless it meets all four conditions

listed above, that concept fails to be the logical one. Feferman (1960) does

not discuss in much depth the reason behind his claim that the concept

expressed must be the logical concept, nor does he discuss why conditions

(i)-(iv) jointly express it. However, in the formalisms that Feferman studies

every proof predicate is either a “change in the logical concept of proof,” or

it is provable, in the formalism, that it is equivalent to the “standard con-

cept,” and hence, in Feferman’s view intensionally correct. For these formal

arithmetics, the “standard concept” is the concept of a formal deduction:

a sequence of formulae that are instances of axioms or obtained from the

axioms by applying the inference rules finitely many times. Moreover, be-

cause the arithmetics Feferman studies are strong arithmetics such as (PA),

variations in the formalism’s proof theory are insignificant.7 Hence, for ex-

ample, since (PA) proves the Hauptsatz, it is provable in (PA) that every

cut-free proof is equivalent to a proof that uses cut; and since (PA) proves

that every Hilbert-style proof is equivalent to a Gentzen-style proof, (PA)

doesn’t recognize the difference between the two proof-systems. Implicitly,

then, it seems that Feferman is committed to the claim that the concept of

proof that is expressed by a formalism need not capture differences in the

formulation of the proof theory nor needs to be responsive to the particular

details of the proof-theoretic capabilities of a given formalism.

In part, this implicit commitment is the means by which Feferman en-

sures that his characterization of the conditions constitutive of the concept

of proof (for formalisms) remains fully general. But, as noted above, there

7 In fact, Feferman (1989) shows that his approach to arithmetization may also be
utilized for weaker formal arithmetics such as (PRA) and its conservative extensions.
There, the solution to the problem of the inference from (G2) to (1) and (2) is solved
through what he calls a “finitary inductively presented logic,” where if a formalism satisfies
a set of inductive conditions, then it satisfies (1) and (2). However, there are still weaker
formalisms for which the problem resurfaces. See the discussion below.
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are formalisms that fail to satisfy conditions (i)-(iv). How should we treat

such formalisms? Feferman’s response might be to argue that since such

formalisms fail his conditions, the proof predicates for such formalisms fail

to express the logical concept of proof, and hence, fail to reflect or present

its own logic. But then Feferman seems to lose traction on the claim that his

characterization of the conditions constitutive of the concept of proof hold in

general. There are at least two responses to the problem of formalisms that

fail to satisfy Feferman’s conditions. One might, as Franks suggests, argue

on a priori grounds that his choice of conditions are not constitutive of the

concept of proof. Or one might, as suggested above, argue that the failure

of an arithmetization to meet one (or more) of Feferman’s conditions yet

produce consequences of “extensional interest” constitutes evidence against

that condition for the particular formalism. On the first route, one assumes,

“monistically,” that the conditions a formalism must meet in order to ex-

press the concept of proof are identical for each formalism irrespective of its

proof-theoretic capacities. On the second route, one denies that the monis-

tic approach carries any weight and assumes, “pluralistically,” that each

formalism implicitly expresses its own concept of proof. If we pursue the

first route, then we must explain why our choice of alternative conditions are

a priori constitutive of the concept of proof but Feferman’s are not. But if

we pursue the second route, then we must find means to extract conditions

for each member of a (possibly) countable set of formalisms and show that

such conditions constitute counterexamples to Feferman’s conditions.

Above we suggested that, because one must explain why the choice of

conditions does not vary with details of the formalism—that is, why the rep-

resentation of a formalism’s metatheory within the formalism must meet the

same conditions irrespective of its specific mathematical and proof-theoretic

capacities—pursuing the monistic route is unlikely to yield much fruit. Let’s

pursue the second, pluralistic, route for a moment. Consider the following.

Recall that, above, we mentioned that if T is as strong as (PA), then it

proves the Hauptsatz and hence proves the equivalence between PrT (y) and

PrGT (y). However, if T is not strong enough to prove the Hauptsatz, then

T fails to recognize the equivalence, and hence, from T ’s standpoint only
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one of the two provability relations is intensionally correct. Feferman seems

to imply that in such cases the “standard” construction is the correct one.

But that one arithmetization is correct while another is incorrect is a claim

that it is possible to make only from outside of T ’s standpoint, i.e., from the

point of view of a proof-theoretically “richer” theory in which we know that

the two formula are equivalent but that T fails to prove this. From the point

of view of T itself, neither formula has more or less claim to correctness. It

might be the case that, from within T , we want a formula that expresses T ’s

provability relative to a proof-theory that is syntactically simpler because

it does not contain the cut-rule. In such a case, the “natural” choice is

the Genztenian predicate. Or, it might be the case that we want a formula

that expresses T ’s provability relative to a standard classical proof-theory

containing the cut-rule. In such a case, the “natural” choice is the standard

predicate. Hence, if one is unwilling to conclude that such formalisms fail

to express a proof concept, then for formalisms that fail to meet conditions

(i)-(iv) and that fail to prove the equivalence between non-standard and

standard metamathematical concepts, one must find the means to formu-

late such concepts by varying the concept of proof “from the outside.”

What variations are permissible? Franks (2009) proposes an approach

to the arithmetization of metamathematical concepts that he contrasts with

Feferman’s “logical” approach by claiming that it is “fully mathematical.”

First, some background. An equation of the form:

f(x⃗) = 0

where the unknowns x⃗ = (x1, . . . , xn) are integers and f is a function of

the integers is a Diophantine equation, and a Diophantine problem asks

whether or not a given Diophantine equation has a solution in the integers.

In Herbrand (1930) it is shown that metamathematical questions such as

“is ϕ a theorem of the formalism S?” are equivalent to particular Diophan-

tine problems.8 Herbrand’s Theorem asserts that a formula (possibly with

8 As is well known, Hilbert (1900) asked, in his famous Tenth Problem, whether in
general there is an algorithm that tells us whether or not a given Diophantine equation
has a solution. Matiyasevich (1970) answered Hilbert’s question negatively, so that there
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quantifiers) is provable in the predicate calculus if and only if there exists a

tautological disjunction (its Herbrand expansion) in which all variables are

replaced by closed numerical terms. Kreisel (1951) and (1952) claimed that

Herbrand’s theorem provides a means of extracting “constructive content”

from metamathematical questions. If we ask if a Diophantine problem has a

solution by effectively substituting closed numerical terms for the unknowns,

then the metamathematical question that corresponds to the Diophantine

problem can be answered in any formalism that proves those terms to be

total functions. Franks claims that this approach provides a better solution

to the problem of an intensionally correct consistency predicate: a Diophan-

tine equation produces for every formalism T (the metamathematics) an

intensionally correct formulation of the consistency of S (the formalism in

question) just in case the equation has a solution in T ’s provably total func-

tions. Hence, on his approach, the consistency statement for a formalism

varies with the functions the metamathematics proves total, and the result

of arithmetizing the question of whether an equation has a solution in T ’s

terms is a formula that corresponds to “the statement of S’s consistency

‘as’, one might say, ‘T thinks about the question’” (Franks (2009), 10).

4.2 Franks on Consistency

Let’s dig in to the details of the view for a moment. Suppose that there

exists a solution in T ’s provably total functions for a Diophantine equation.

Then, by Herbrand’s Theorem, we may construct a Herbrand disjunction

that states that one (or more) of T ’s provably total functions is a solution

to that equation such that S proves the disjunction. Since S proves the

disjunction, it is possible to construct, in T , a consistency predicate for S

from the Herbrand disjunction that is accurate for it from T ’s point of view.

However, since it is possible that T might be proof-theoretically stronger

than S, the question arises as to whether it is possible for S to construct its

consistency predicate on its own. If so, then since S proves the Herbrand

disjunction and the consistency predicate is built out of the Herbrand dis-

is no general method for determining if so or not.
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junction, then it ought to follow that S proves its own “consistency,” where

the arithmetization of consistency does not result in the standard consis-

tency predicate, Con(S), but rather ConH(S), its Herbrand-consistency.

Franks answers this in the affirmative. More precisely, let PrHT (ϕ) be the

Herbrand-provability predicate for T , read as “there is a Herbrand proof of

ϕ,” and which says that for a finite set T ′ of the axioms of T there is a

Herbrand-disjunction of ϕ proved in T ′ in which closed numerical terms and

functions are substituted for variables such that the resulting quantifier-free

disjunction is a propositional tautology. Then, the Herbrand consistency

of T , ConH(T ), is the assertion that no finite set T ′ proves a Herbrand-

disjunction with a contradiction (or ⊥) as the end-formula of the proof.

Note that there are two features of this approach that indicate that it is

a change “from the outside” in the concept of proof. First, in the arith-

metization of provability, and hence in the construction of the consistency

statement, one must arithmetize the concept of proof using a predicate that

expresses it for propositional logic. Second, in formalisms that do not prove

Herbrand’s Theorem, PrT (ϕ) and PrHT (ϕ) are not equivalent, and neither

are their consistency statements. Hence, as discussed above, for such for-

malisms one is faced with a choice: either stick with the standard statement

Con(T ) or change the concept of proof from the outside.

For concreteness, consider a kind of formalism that we shall call, after

Buss (1986), Bounded Arithmetic (BA).9 Let Conβ and ConHβ be two con-

sistency formulae for (BA) such that β is a recursively enumerable arithme-

tization of the axioms of (BA), where the former is the standard consistency

predicate while the latter is its Herbrand consistency. No member of this

class proves Herbrand’s Theorem. Hence, it follows that:

(BA) ̸⊢ Conβ ↔ ConHβ . (∗)

On an intensional interpretation, only one of the two formulae can be accu-

rate from (BA)’s point of view. Since Conβ is not provable in (BA), whereas

9 Buss (1986) investigates the computational properties of a class of formalisms, the
“bounded arithmetics,” which he denotes as Si

k, and which include Q, a quantifier-free
schema of induction, plus an axiom asserting that exponentiation is a total function.
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ConHβ is, Feferman might claim that this speaks against the intensional cor-

rectness of ConHβ . But Franks draws an orthogonal conclusion. He argues

that (∗) provides an analysis of (G2) for (BA). Though the quantified for-

mula that is the result of arithmetizing the standard consistency statement

for (BA) is true in the sense that there exist numerical terms that can be

substituted for the variables, such terms do not belong to the class of func-

tions that (BA) proves to be total, and hence, do not belong to its provably

total recursive functions. “Thus,” he writes, “the unprovability of the stan-

dard consistency statement in bounded arithmetic appears merely to be a

consequence of the fact that there are function symbols in these theories’

languages that they do not prove to be functions” (Franks (2009), 150). For

Franks, the unprovability of Conβ in (BA) follows from the fact that (BA)

contains expressions for functions that (BA) does not prove to be total. But

the fact that a formalism contains redundant expressions seems to be a poor

reason to believe that Conβ expresses the consistency of (BA), and Franks

takes it to be evidence against the intensional correctness of Conβ. Hence,

he concludes, here’s a case in which a “non-standard” concept of consistency

expressed by (BA)’s Herbrand-consistency appears to be preferable.

Let’s reflect on this approach for a moment. While we have argued

that the idea that the evidence for or against the choice of an intensional

predicate for a formal system ought to arise from the constraints of that

system itself, Franks’ choice of Herbrand-consistency as an alternative to

the standard formulation raises some questions. First, in general the ex-

istence of a solution given a Diophantine equation is undecidable, though

cases of it are decidable. Jones (1980) shows that, given a Diophantine

equation, if there exists a decidable algorithm for its solution, then the de-

gree of the equation must be strictly less than four. Hence, a formal system

in which its Herbrand-consistency is provable must have a set of provably

total recursive functions whose solutions are in a Diophantine equation of

less than four degrees. Hence, and in plain(er) English, formal systems

in which Herbrand-consistency is preferable to the standard formulation of

consistency and provable where the standard is not have extremely limited
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mathematical application.10 Second, Franks might counter that it might be

possible to prove the Herbrand-consistency of a formal system stronger than

the bounded arithmetics, just in case there exists a solution to a Diophan-

tine equation of degree greater than or equal to four in that formal system’s

provably total recursive functions. But then the existence of a consistency

proof for a formalism depends upon open mathematical problems involving

the solvability of Diophantine equations, many of which are unknown and

whose general problem, as we remarked above, is undecidable. Hence, the

question of a system S’s consistency depends upon the existence of a so-

lution to a Diophantine equation in S’s provably total recursive functions.

It seems, then, that we’ve foisted the problem of a consistency proof for a

formal system onto the solvability of open mathematical problems, and that

direction of dependence is in conflict with Franks’ claim that an intensional

proof-theoretic analysis ought to contribute to mathematics.

But the problems in Franks’ approach go deeper and appear to affect

many approaches to the problem of consistency when it’s formulated as a

problem of arithmetization. That is, either we tinker with the arithme-

tization of consistency for particular formalisms in order to skirt (G2) or

we preserve and generalize (G2) and stick with its canonical arithmetiza-

tion.11 In other words, when our approach begins with the question of

which arithmetization is the proper one we are faced with a dilemma. Ei-

ther an arithmetization of consistency is suited, a la Franks, to the particular

formalism for which it’s formulated but its applicability is not fully general,

or an arithmetization is the canonical one, a la Feferman, and its applica-

bility fully general but unsuited to the particular means with which a given

formalism is formulated. On the first approach a formalism can be said to

more correctly express its own consistency but then its application is ex-

tremely limited, while on the second approach arithmetization for specific

formalisms is absorbed into the canonical expression of consistency but its

application is fully general. Hence, we seem to have a dilemma. Either the

10 Indeed the limit, and hence the extent to which a system may prove its own Herbrand-
consistency, is fixed to just the so-called set of bounded arithmetics studied in Buss (1986).

11 Cf. Solomon Feferman (2012).
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inference from (G2) to claims (1) and (2) fails for extremely weak theories

with limited applicability, or the inference holds but we lose the explanation

for why it holds. In part, this is because Franks primarily puts pressure on

the question of the arithmetization of the consistency predicate, while in fact

the issue goes deeper than that. Indeed, as we shall argue in our conclusion,

the issue here lies with how the provability predicate expresses the concept

of proof. Hence, we shall begin to spell out our own, “third pressure point,”

to Feferman’s 1960 argument and develop some of its consequences while

indicating further directions for proof-theoretic research. Our main ques-

tion is when is a change in the concept of proof for a given formal system

warranted and when is it not?

5 Conclusion

Recall that in section (3) we looked at Feferman’s suggestion that if no con-

sequences of extensional interest result from the use of predicates with in-

tensions that fail to meet one of conditions (i)-(iv), then that should count

as evidence against believing that such a predicate expresses the correct

concept. Our claim there was that the suggestion opened up a third pres-

sure point in our discussion of arithmetization—namely, the idea that if an

arithmetization with a non-standard intension of provability does produce a

consequence with extensional interest, then that ought to count as evidence

for that non-standard intension. Let’s consider this more precisely for a mo-

ment. In proof theory, reflection principles express a form of soundness—if

ϕ is provable, then ϕ is true—and as such their use within a base theory

T applied to a proof-theoretically stronger theory T ′ appears to be desired.

For a reflection principle, when localized to a weak theory T , expresses the

concept that all theorems derived via T are true. On this suggested approach

for a theory we then have:

Theorem 3.0: If ⊢T Pr(ϕ) → (ϕ), then ̸⊢T PrT (ϕ) → PrT (PrT (ϕ)),

and hence:

Corollary 3.1: If ⊢T Pr(ϕ) → (ϕ), then ̸⊢T⊥
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Since Corollary 3.1 is formalizable, it follows that if T encodes a reflection

principle for itself, then T fails to prove that it is inconsistent, and hence,

does not know that it is not. Our claim is that this isolates a special, com-

binatorial concept of mathematical proof. Under this concept the inferences

from (G2) to claims (1) and (2) fail. But immediately at least two natural

questions arise. First, since this is far too general—ϕ here is unrestricted

for the purposes of illustration—are there natural formalisms in which con-

dition (ii) fails that one can show a similar bootstrapping procedure for the

arithmetization of the consistency statements for such theories? Second,

and more importantly, when a reflection principle holds and condition (ii)

fails, it follows that the set of axioms for which said principle holds not re-

cursively enumerable. Is this too large a concession for such an apparently

small payoff? On the first question our hunch is that there is, and on the

second our hunch is that it is not, but we leave both to future research.

Our claim here is not that this constitutes the only approach. Rather,

where Feferman’s analysis of the concept of proof reduces to what he calls

the “’logical” concept, and where Franks believes to have isolated the purely

“mathematical” concept of proof in an arithmetization, our claim is that we

have isolated a combinatorial concept of proof. Whatever the proposed

conditions, they must at least be compatible with the sense of the formula’s

intensional correctness and capture how this justifies the consistency formula

as a correct expression of consistency for the particular formalism under

consideration. But for the pursuit of Hilbert’s Program using limited means,

this seems to be as it should.
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