
Boolean Satisfiability & Sudoku

Alexei E. Angelides

Our goal in what follows is to show that:

Theorem: There is a truth-value assignment for a set of Boolean propo-

sitions if and only if there is a solution to Sudoku.

The idea behind the theorem is that it is possible to “reduce” combinato-

rial problems, such as finding a solution to Sudoku puzzles, to finding a

truth-value assignment for the set of propositions that describes those puz-

zles. Conversely, we might think of the theorem as asserting that it is also

possible to reduce a set of propositions in Boolean logic to a solution to a

combinatorial problem, again like Sudoku. The biconditional (iff ) in the

theorem asserts that these two tasks are one and the same.

For this proof, we first need to describe the conditions defining a solution

in the language of Boolean logic. Let’s look at a concrete example first.

Suppose you had a Sudoku puzzle in which the upper most left most row

and column, respectively, contains 1. The next row down and next column

to the right contains 2. Then, continuing along this diagonal, the sequence

3, 7, 4, 8, 9, 5, 6 occurs so that the entire diagonal beginning from the cell

placed at the leftmost and uppermost column and row contains:

1, 2, 3, 7, 4, 8, 9, 5, 6.

How should we then say that one of the cells is occupied by a digit? Using

atomic sentences, and indices for them, let Si,j,k express the claim that the

digit k is on the cell (i, j), where i is the row, and j is the column. Hence,

for example, the Boolean atomic sentence:

S1,1,1

1



expresses the claim or condition that the number 1 occupies the leftmost

column and topmost row. Likewise, the Boolean atomic sentence:

S6,6,8

expresses the claim or condition that the number 8 occupies the 6th column

6th row of the 9×9 grid. Both of these claims are, in the example above, true.

Or better, the conditions are satisfied, in the sense that the conjunction:

S1,1,1 ∧ S6,6,8

is satisfied—or made true—by the arrangement in the example above, whereas

the Boolean compound sentence:

(S1,1,1 ∧ S6,6,8) ∧ S2,2,3

is not satisfied by the arrangement in the example above. Let’s attack the

general problem of describing, using Boolean language, a Soduko solution.

We need to satisfy five different conditions. One of them needs to de-

scribe what it means for a digit to occupy a cell. Another needs to say that

no more than one digit can occupy a cell. Another needs to say that a digit

is in a row. Another needs to say that a digit is in a column. The last

condition needs to say that each one of the nine digits occurs in each 3× 3

subsquare of the 9×9 grid. If we now want to say that one of the nine digits

occurs in a cell, we ought to write down a formula that says that either 1

occurs in a cell (i, j), or 2 occurs in a cell (i, j), and so on. That is:

Si,j,1 ∨ Si,j,2 ∨ Si,j,3 ∨ Si,j,4 ∨ Si,j,5 ∨ Si,j,6 ∨ Si,j,7 ∨ Si,j,8 ∨ Si,j,9.

Call that condition (1).

Now we need to say that a cell (i, j) cannot contain more than one digit.

For example, the compound Boolean sentence:

¬Si,j,1 ∨ ¬Si,j,2 ⇔ ¬(Si,j,1 ∧ Si,j,2)

2



expresses the condition that (i, j) cannot contain both 1 and 2. Along with:

¬Si,j,1 ∨ ¬Si,j,3

and ¬Si,j,1∨¬Si,j,4 and ¬Si,j,1∨¬Si,j,5 and ¬Si,j,1∨¬Si,j,6 and ¬Si,j,1∨¬Si,j,7

and ¬Si,j,1 ∨ ¬Si,j,8 and ¬Si,j,1 ∨ ¬Si,j,9 expresses the condition that if cell

(i, j) contains the number 1, then it cannot contain any other number. We

need to iterate this process for each number, beginning next at the number

2. Call the set of pairs of disjunctions condition (2) and represent it as:

¬Si,j,k ∨ ¬Si,j,l i, j ∈ {1, . . . , 9} and 1 ≤ k < l ≤ 9.

The next two conditions are pretty simple. One of them needs to say that

the digit k occurs in one of the rows. For example, the Boolean compound

sentence:

S1,1,k ∨ S1,2,k ∨ . . . ∨ S1,9,k

expresses the condition that k occurs in row 1, either in column 1, or in

column 2, and so on. So let’s apply that to each row. Then we’ll have a

long disjunction: ∨
j≤9

Si,j,k i, k ∈ {1, . . . , 9}

that expresses the condition that, as we go through each of the columns,

we’ll find one of the nine digits on row 1, row 2, and so on. Call that

condition (3). Our next task is similarly simple. We need to express the

condition that k occurs in one of the columns. Just like we did for the rows,

then, let’s take a long disjunction:∨
i≤9

Si,j,k j, k ∈ {1, . . . , 9}

that expresses the condition that k occurs in one of the columns. Call

that condition (4). So far, so good. We have managed to come up with

four Boolean compound sentences that, together, describe the placement of

digits in rows and columns on the entire 9 × 9 Sudoku board. However,

3



in order to count as a solution to Sudoku, we also need to come up with

a condition that describes the fact that each digit from 1 to 9 must occur

in each individual cell of the 3 × 3 subsquares that constitute the board’s

partition. Hence, we need one more condition that expresses just that.

How should we express the condition that the digit k occurs in one of

the nine cells in one of the 3 × 3 subsquares of the 9 × 9 grid? Let’s take

the first subsquare to the right of the uppermost leftmost subsquare. If k

occurs in one of these cells, then since on the 9 × 9 grid, that is columns 4

through 6 and rows 1 through 3, we should express it as a disjunction over

these 9 cells. In other words:

S1,4,k ∨ S1,5,k ∨ S1,6,k ∨ S2,4,k ∨ S2,5,k ∨ S2,6,k ∨ S3,4,k ∨ S3,5,k ∨ S3,6,k

expresses the condition that we need. A shorter version would use the big

disjunction symbol:∨
Si,j,k such that 1 ≤ i ≤ 3 and 4 ≤ j ≤ 6.

Let’s try to organize all of the conditions for each subsquare into a single

condition. We know that we need to express the condition that the digit

k occurs in one of the nine cells of a subsquare. Let’s fix the upper left

corner of each subsquare and say that the pair (as, bs) describes the upper

left corners of the subsquares, where s is the number that occurs in the cell

of that subsquare. Then, it is possible to express the condition that the digit

k occurs in a 3× 3 subsquare by the Boolean compound sentence:∨
Si,j,k such that as ≤ i ≤ as + 3 and bs ≤ j ≤ bs + 3

This expression fixes the range of placing digits 1 through 9 to each sub-

square by fixing the rows and columns that constitute one of the 9 different

3× 3 subsquares. Call that condition (5).

At this point, we have 5 different conditions. One of them describes the

condition under which a digit occurs in a cell on the grid. Another describes

the condition under which no more than one digit can occur in a cell on the

4



grid. Another describes the condition under which a digit occurs on a row,

another describes the condition under which a digit occurs on a column, and

the last describes the condition under which one of the nine digits occurs in

a cell on a 3×3 subsquare of the grid. These are the conditions under which,

if they are all satisfied together, then we shall have a solution to a Sudoku

puzzle. In other words, let’s take the conjunction of the five conditions:

(1) ∧ (2) ∧ (3) ∧ (4) ∧ (5)

and denote that conjunction as SDK.

Hence, we’re now in a better position to prove the theorem. The next

step is to define what we mean by a satisfaction assignment for a formula.

Look back at the truth tables. The assignment of truth values to atomic

sentences under which a conjunction is true is the assignment that sendsT to

both conjuncts. Satisfaction is like truth, in that we say that the conjunction

of two sentences is satisfied just in case both conjuncts are satisfied. Let’s

define a satisfaction assignment accordingly.

Definition: For all formulae α of the Boolean language of sentential logic,

v is a satisfaction assignment for α if and only if v(α) = T

Here, α just acts as a variable for any old sentence of the Boolean language.

Thus, for example, α could be A ∨B, in which case the satisfaction assign-

ment for α is the assignment v′ under which v′(A) = T , or v′(B) = T , or

both. We can now restate the theorem in much clearer language.

Theorem: For all satisfaction assignments v, v(SDK) = T if and only if

there exists a solution to a Sudoku puzzle.

Note that there are two parts to the proof. For one part we’ll assume that

we have a satisfaction assignment to SDK and show that there must be

a solution to the puzzle. For the other part, we’ll assume that we have

a solution to a Sudoku puzzle and show that there must be a satisfaction

assignment to SDK such that v(SDK) = T . Let’s work on the direction

from left to right first.

5



Proof : First note that the left to right direction is a conditional. So we need

to assume the antecedent and try to prove the consequent. Hence, as-

sume that we have an arbitrary v′ where v′ is a satisfaction assignment

for SDK. In other, more precise, words:

v′(SDK) = v′((1) ∧ (2) ∧ (3) ∧ (4) ∧ (5)) = T.

Hence, we need to show that given the truth of all five conditions there

is a solution, a “correct placement” of digits on the board. Let’s be

more precise about what “correct placement” means. Let’s define a

correct placement to be the condition that if v′(Si,j,k) = T , then in

the square s with cell (i, j), the digit that occurs there is k. That is,

define a placement of digits si,j ∈ {1, . . . , 9} into cells (i, j) as:

si,j := k iff v′(Si,j,k) = T.

This definition says that the digit k occurs in cell (i, j) within the

square s just in case the Boolean sentence Si,j,k is true. Now we need

to show that if the five conditions that constitute SDK are all satisfied

by v′, then k will be correctly placed in a cell (i, j) within a square s

such that the placement constitutes a solution to a puzzle. That is,

we have five different subproofs, corresponding to the five conditions.

1. First we need to show that if v′((1)) = T , then there is some

k such that k ∈ {1, . . . , 9}. Assume, then, that v′((1)) = T .

Then at least one of the disjuncts in (1) must be true. Hence,

v′(Si,j,k) = T for some k. Since, there are nine disjuncts, it also

follows that k ∈ {1, . . . , 9}.

2. Second we need to show that if v′((2)) = T , then the k in cell

(i, j) is unique. Assume that v′((2)) = T . For a contradiction,

also assume that v′ assigns the value T to two different Boolean

sentences. That is, assume, for a contradiction, that v′(Si,j,k) = T

and v′(Si,j,l) = T such that k ̸= l. Then it follows that v′(¬Si,j,k∨
¬Si,j,l) = F for that clause in (2). But that contradicts our

6



assumption that v′((2)) = T for all of the clauses in (2).

3. Third we need to show that if v′((3)) = T , then the ith row

contains k. Assume that v′((3)) = T . Then, it follows that for

each k the disjunction in (3) is true. Hence, v′(Si,j,k) = T for

some j from 1 to 9. Hence, si,j = k for each k at the ith row.

4. Fourth we need to show that if v′((4)) = T , then the jth column

contains k. Assume that v′((4)) = T . Then, it follows that for

each k the disjunction is true. Hence, v′(Si,j,k) = T for some i

from 1 to 9. Hence, si,j = k for each k at the jth column.

5. Fifth we need to show that if v′((5)) = T , then the square fixed

by (as, bs) contains each digit. Assume that v′((5)) = T . Then,

it follows that for each k the disjunction in (5) is true. Hence

v′(Si,j,k) = T for some i and some j such that:

as ≤ i ≤ as + 3 and bs ≤ j ≤ bs + 3

Hence, si,j = k for each subsquare fixed by the uppermost left-

most corner at (as, bs).

We have verified that, if each condition from (1) through (5) is true,

then the digit k that occurs on a row i in a column j in a subsquare will

be unique, and that each digit occurs in a subsquare. Of course, that’s

just what it means to have a solution to a Sudoku puzzle. Hence, one

half of our proof is now complete. Q.E.D.

We now have to work on the right to left direction. That is, now we’ll assume

that we have a correct placement of digits on a given Sudoku board, and

show that there is a satisfaction assignment v′ for SDK.

Proof : Again we need to define a satisfaction assignment to Boolean sen-

tences Si,j,k. Let’s mimic the definition above. Define an assignment

v′ such that:

v′(Si,j,k) = T iff si,j = k.

Now we need to check that v′ is a satisfaction assignment for all of the

conjuncts in SDK. Let’s start with the first conjunct.

7



1. First we assume that si,j is a digit k. It follows that v′(Si,j,k) = T

for some k and hence that v′((1)) = T , since at least one of its

disjuncts is true.

2. Second assume that k is a unique digit. If so, then if k ̸= l, then

either si,j ̸= k or si,j ̸= l. It follows that v′(¬Si,j,k ∨ ¬Si,j,l) = T .

Hence, v′((2)) = T .

3. Third assume that each row i for some column j contains digit

k. Then, it follows that si,j = k. Hence, v′(Si,j,k) = T for each

row i and each k for some column j. Hence, v′((3)) = T .

4. Fourth assume that each column j for some row i contains digit

k. Then, it follows that si,j = k. Hence, v′(Si,j,k) = T for each

column j and each digit k for some row i. Hence, v′((4)) = T .

5. Fifth, assume that each subsquare fixed by (as, bs) contains con-

tains each digit k. Then for some cell (i, j) in the subsquare, it

follows that si,j = k such that:

as ≤ i ≤ as + 3 and bs ≤ j ≤ bs + 3.

Hence, v′(Si,j,k) = T for some cell (i, j) in the subsquare. Hence,

v′((5)) = T , since at least one of the disjuncts is true.

We have verified that, if we have a solution to a Sudoku puzzle, that

is that if one of the digits 1 through 9 occurs in the cell (i, j) on the

9× 9 grid, and no more than one digit occurs in that cell, and that if

each digit occurs in a row, and each digit occurs in a column, and that

each digit occurs in each cell of each subsquare, then each condition

(1) through (5) is true under the satisfaction assignment. Hence, the

entire conjunction SDK is satisfied by the assignment. Q.E.D.

Our proof is now complete.

What we’d like to do now is verify that the reduction of the combinatorial

problem of determining the number of solutions to Sudoku puzzles can be

reduced to a much much easier problem: namely, the problem of counting

the number of different clauses in SDK. What we want to show is that if

8



n is the number of clauses in SDK and m is the cardinality of the set of

correct solutions to Sudoku puzzles, then n < m. From the computational

point of view, this could be helpful, since if it takes less time to count the

number of clauses in SDK than it does to count the number of correct

Sudoku solutions, and since the theorem asserts that SDK is a description

of the set of solutions, then we can simply replace the job of counting the

number of correct solutions to Sudoku by the much easier task of counting

the number of clauses in SDK. Let’s start counting, beginning with the

number of clauses in (1), and continuing systematically. Note that a true

fact is that the number of correct solutions to Sudoku puzzles is:

6.671× 1021.

1. Condition (1) contains 81 different clauses, one for each cell.

2. Condition (2) contains 81× 36 different clauses, since (2) has a clause

for all 81 cells (i, j). But each clause in (2) also represents each pair

(k, l) where k < l and 1 ≤ k < l ≤ 9. That is, there are 9×8
2 = 9× 4 =

36 possibilities for each pair (k, l). Hence the total is:

81× 36 = 2, 916.

3. Condition (3) contains a clause for each i and each j. Hence, the total

number of clauses is:

9× 9 = 81.

4. Condition (4) contains again a clause for each i and each j. Hence,

the total number of clauses is:

9× 9 = 81.

5. Condition (5) contains again a clause for each i and each j. Hence,

the total number of clauses is:

9× 9 = 81.

9



Hence the sum total of clauses in SDK is:

81 + 2916 + 81 + 81 + 81 = 3, 240.

From a computational point of view, since the number of clauses in SDK

is far less than the number of solutions to Sudoku puzzles, it is much easier

to find a solution by looking through the set of clauses in SDK than it is to

sift through the number of solutions. This is an illustration of how reduc-

ing a combinatorial problem (like Sudoku solutions) to a problem involving

satisfaction assignments to Boolean sentences yields computationally more

tractable solutions. In other words, it’s an illustration of how, despite the

fact that it seems difficult, logic actually makes things easier.

10


